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Delivering New Platform Technologies 

Dreaming up a new technology is just the first of many steps in 
getting the technology developed, making it deployable, delivering it 
broadly into the market place, getting it widely enabled, and having 
it be effectively used. In this talk, we discuss this the various steps 
required to successfully carry out such a process using Intel’s new 
RdRand/DRNG technology as an example. 

 

George Cox 

Security Architect 

Intel Corporation 
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Delivering New Platform Technologies 

Common problem for product developers 

Existing platform architecture framework as context 

• No “clean sheet of paper” 

How embed new technology so that value gets delivered through 
applications and services 

Security technologies bring the added problem of how to embed them 
securely 

  

 



The Platform’s Need For Entropy 

Entropy is valuable in a variety of uses, the first of which that comes 
to mind being for “keying material” in cryptography. 

Cryptography is a basic building block for modern computer security 
and is based upon the use of comparably high quality algorithms and 
keys. 

Either being “weak” has resulted in successful attacks on cryptographic 
systems. 

Over time, cryptographic algorithms and their implementations have 
continually been improved, as needed (e.g., our AES NI). 

Comparably, the availability, quality, and performance of entropy 
sources have not. 

 



The Platform Entropy Problem 

Historically, computing platforms have had a perennial problem of the 
absence of any high quality/high performance “entropy source”.  

Older approaches were almost all based upon the premise that true 
“raw” entropy accumulation was a very slow process. 

Entropy was slowly gathered in small quantities from sources of true 
entropy (some HW source) at slow rates - in the bits/sec (e.g., key 
strokes, mouse click timing, disk seek times) up to kilobits/sec (analog 
ring oscillator-based TRNGs)  

As a scarce resource, entropy had to be accumulated (in an entropy 
pool) and used to seed/reseed a SW PRNG that could cryptographically 
spread that scarce entropy resource out over numerous requests with 
acceptable performance. 

With little availability of quality entropy early in boot, OSes can have 
difficulty generating good boot time keys. 
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The Platform Entropy Problem 

OS mediated access to HW entropy sources reduces application or 
networking performance further.  

Many of these SW PRNGs did not met quality standards such as NIST 
SP 800-90 or were not FIPS 140-2 certified as such. 

Such SW PRNGs also have a history of being error prone and easily 
monitorable/attackable. 

As servers become headless (e.g., with no keyboard or mouse) and 
move to SSDs (instead of disks), platform sources of entropy are going 
away. 

As one moves to virtualized environments, the virtualized OS that 
thinks it can get at the platform’s HW entropy probably can’t and will 
suffer further performance loss caused by hypervisor mediation. 

6 
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Have Entropy? 
 
True Random Number Generators (TRNGs) – aka Nondeterministic 
Random Bit Generators (NRBGs) 

• True random numbers must come from some HW source 

• TRNG/NRBG are really misnomers as don’t they generate entropy 

• They just sample and digitize some form of HW noise (e.g., thermal) 

Existing Entropy Sources are analog (e.g., triple ring oscillators) 

• Hard to manufacture 

• Hard to migrate across process generations - particularly as feature 
sizes continue to shrink 

• Usually relatively slow (e.g., a few hundred Kbits/sec) 

Opportunity arises out of circuit research 

• A digital entropy source 

• Blindingly faster by comparison (e.g., 2.5 – 3.5 Gbits/sec) 

How embed entropy in platforms? 
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How Make It Have Known Quality 
 

Entropy Sources “raw” output can be 

• Correlated 

• Biased 

Need post processing to generate uniformity in output 

Today’s solutions are to use “raw” entropy to “seed” SW PRNGs 

Historically, numerous problems with SW PRNGs 

Solve by  

• Meeting a standard (e.g., NIST SP 800-90) 

• Do it in HW 

• To make it 

– Less attackable 

– Faster 
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How Make Sure Design Meets Goals 
 

Certify that it meets the standard it is designed for (e.g., NIST SP 800-
90 compliance via FIPS 140-2/3 Level 2 process) 

Self certification 

• Why should we trust you? – financial institutions through security 
ISVs 

Third party certification (e.g., via SAIC) 

• Costs 

• TTM delay 
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How Make Sure That Design Gets Delivered 
 
Design For Test (DFT) 

• Same pre/post silicon 
– Consistency across all testing regimes (unit, uncore, full chip) 

– Otherwise, do not know whether (or not) all versions of implementation 
are equivalent 

• Comprehensive Built In Self Test (BIST) – “test from inside” - use in  
– High Volume Manufacturing (HVM) and 

– Product 

– At every “reset” to guarantee feature health 

• Test Port 
– Complete internal state examination/alteration and sequencing 

– Available only in development/debug 

Deliver “securely” 

• Build inside an enforced “security boundary” 
– Interlocks to guarantee no internal state examination in production use 

• Allow only authorized users to access 
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How Make Sure Can Deliver Across Product Lines 
 Design for reuse 

• Just write nice RTL and done? 

• Just run pre-silicon simulations and done? 

• Just synthesize and “place and route” and done? 

Across (semiconductor) processes 

• Generations (e.g., 45, 32, 22, 14, and now waiting for 10 nm) 

• Variations – normal versus low power 

Across on die interconnects (e.g., range of busses, JTAG, …) 

Across design styles (e.g., coding standards) 

Across clocking models (e.g., clock gating) – autonomous or forced 

Across power models (e.g., power gating) – autonomous or forced 

Across post-silicon validation (process, voltage, temperature) 

Across 31 product embeddings by EOY’2012  
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How Get Entropy To Users 
 Drive for as little dependency on others => less enabling cost/time 

• HW OEMs 

• VMMVs 

• OSVs 

• ISVs 

Interface choices 

• Protected register interface – requires 
– OS “driver” deployment 

– user/OS call/return 

• Instruction interface - RdRand 
– Available in all domains and states 

– No OS or other SW dependency 

– Application/service SW can invoke directly 

– Not always applicable if function is “long running” as could interfere with real 
time response 

• Results in “vertical IP” – full value stack – from primitive (Entropy 
Source) to instruction provided in HW without any need for SW enabling 



13 

How Get Users To Use 
 Motivation 

• Entropy (and algorithms) basis for cryptography 

• Cryptography basis for many security solutions … 

• Bad (quality) keys more often the cause of cryptography breaks 

Understand potential usages 

Make easy to adopt 

• Make it FAST – Butler Lampson 

• Embedding in existing libraries (e.g., seeding SW PRNGs) 

• Direct use via compiler intrinsic (avoid trusting library and 
call/return overheads) 

• “White papers” on 

– Efficient/correct use 

– Performance/quality advantages 

• Sample embeddings in key OSV/ISV applications/services 

• Advertising of value 

 New “brand promise” of high quality/high performance 

entropy on ALL Intel platforms 
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How Find New Uses 
 

Always want to find/enable new uses/users 

Explore other entropy uses beyond cryptography 

What other uses might benefit from or be enabled by more high 
quality/high performance entropy being available  

• We thought: 

– Nondeterministic simulations 

– Nondeterministic gaming 

but they require “replayable” entropy streams => separate SW PRNGs per 
application instance 

still use outputs for high volume “seeding” of parallel SW PRNGs 

• We have characterized: 

– Communication concentrator/transaction frontend servers – IV per packet 

– Memory/disk clearing 

and have ISV enabling under way 
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Basic DRNG Module 

A reusable IP module that Provides each embedding with an autonomous/self contained, high 
quality/high performance, “complete” DRNG 

Composed of 

– An all-digital Entropy Source (NRBG), runtime entropy quality measurement (OHT), 

– Conditioning (via AES CBC-MAC mode) and DRBGing (via AES CTR mode) post processing 
and 

– BIST and Test Port 

“Standards” compliant (NIST SP 800-90) and FIPS 140-2/3 Level 2 certified as such and 

Designed for ease of testability, debug, and validation in HVM and in end user platforms 

– Comprehensive BIST test with “known value” injection/sampling and 

– Test Port (and associated tools) for full pre/post silicon debug flexibility 

Combined Conditioner/

Deterministic Random 

Bit Generator (DRBG)

Test Port

Online 

Health 

Tests

Entropy 

Source

BIST

DRNG Wrapper Interface (embedding specific)

DRNG

Red dotted line is a FIPS boundary 
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Digital RNG – DRNG 

Provides each processor package 
with a chipset independent, 
autonomous/self contained, high 
quality/high performance, 
“complete”, shared, uncore 
resident DRNG 

Test Port 

Processor Package 
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Performance 

Direct access to random numbers through RdRand bypasses OS, 
driver, and associated overhead 

Application (today) 

Crypto API 

OS 

Driver 

HW Entropy Gathering 

Application (RdRand) 

Crypto API RdRand 

RdRand 

On-chip entropy source - no off-chip 
bus or I/O delays 

Latency comparable to software 
PRNGs 

Highly scalable 



Measured Throughput 
Preliminary data from pre-production 
Ivy Bridge sample1 

 

Up to: 

•70 million RdRand invocations 
per second 

•500+ Million Bytes of random 
data per second 

Throughput ceiling is insensitive 
to number of contending parallel 
threads 

• Steady state maintained at peak 
performance 
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Response Time and Reseeding Frequency 
 

RdRand Response Time 
~150 clocks per invocation  
(Note: Varies with CPU clock frequency since 
constraint is shared data path from DRNG to cores.) 

Little contention until 8 threads 

• (or 4 threads on 2 core chip) 

Simple linear increase as additional threads 
are added 

DRNG Reseed Frequency 

Single thread worst case: Reseeds every 4 
RdRand invocations 

Multiple thread worst case: Reseeds every 23 
RdRand invocations 

At slower invocation rate, can expect reseed 
before every 2 RdRand calls 

• NIST SP 800-90 recommends ≤ 248 
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Preliminary data from pre-production 
Ivy Bridge sample1 
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DRNG Direction 
• Support the RdRand instruction and other product technology uses  

• Be standards based to provide known quality (NIST SP 800-90 compliant) 
– Approved in Security Initiative, CART, and IPTR reviews as the designated vehicle to drive 

a cross Intel, uniform brand promise of high quality/high performance entropy 

• Be FIPS certified to demonstrate adherence to that standard 
– As requested by Microsoft, Apple, RSA, EMC, Oracle, the US and British governments, … 

• Be totally Intel IP (parent application filed) 

• Be a reusable IP module for reuse/deployment on ALL Intel silicon wherever 
entropy is needed => replacing any/all alternatives 

We are well on the way to accomplishing these goals over the next couple of 
process/product generations: 

• With MPS1/1269, X10B/1270, and MPS3/1269.8 test chips in progress and 
X11B/1271 in planning 

• It is POR for: 
– Large core processors: 

• Starting with Ivy Bridge and Haswell (in 1270) and 

• Associated server processors (Ivy Town) 

– Small core processors: starting with Silvermont/Pondicherry-based SOCs 

• Valley View (in 1271.1) and 

• Tangier (in 1271.4); and 

– Chipsets: starting with Lynxpoint/Wellsburg PCH (in 1269.8) 

– Integrated graphics – starting w/GEN in Haswell 
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DRNG Description 

Directly available for use by ALL processor-based SW use (via RdRand) 
instruction in all privilege levels and all operating modes and 

Also available for other uncore and processor uCode usages such as 
implementing other IA instructions that need random numbers (e.g., Secure 
Enclaves IA instructions) 

Process Independence 

– Standard cell-based design w/NO need for process specific validation (e.g., as with 
analog entropy sources) or separate power supplies 

Robustness 

– HW/uCode implementation protects the DRNG (both NRBG and DRBG units and their 
states) from SW attack 

Shared Resource 

– Across “n” processor cores, threads, VMs, communication stacks, and apps in package 

– Designed to scale under multiple consumer load 

Power Management 

– Self scheduling, compute ahead, low latency, consumption driven, queued interface 

– Clock gates itself off when queues full (and prepared to support power gating, but not 
yet called for) 
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DRNG Value 

Technical Value 
– “Securing” anything on a computer requires 

• Use of high quality cryptography which requires 
• High quality keys which require 
• High quality random numbers/entropy which require 
• A high quality Entropy Source (in HW) and 
• High quality (e.g., standards compliant) post processing (e.g., via 
conditioner/DRBG) certified as such (e.g., via FIPS 140 2/3 Level 2) 

– DRNG 
• Satisfies these needs and 
• Is the first/only, commercially available, autonomous/self contained, 
“complete” DRNG product 

Business Value 
– Establish Intel products as providing the highest quality/highest 

performance entropy sources in the Industry  
– Exceed/meet competition feature – ubiquitous (non-SKUed), brand 

promise, new instruction feature (RdRand) across ALL IVB/HSW 
processors 
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DRNG Value 

Target Segments 
– Initially POR on Ivy Bridge/Haswell processors => Eventually as a 

reusable IP collateral circuit providing uniform brand promise 
across ALL Intel silicon - platform types (MIDs – Servers) – on 
processors, chip sets, and anywhere else that entropy is required 

Competitive Position 
– Existing competition, led by VIA (C7 and Nano) with their XSTORE 

instruction, provide relatively slower Entropy Sources and do not 
integrate entropy post processing 

Customer Input 
– Microsoft, Apple, RSA, EMC, Oracle, Google, and Sun ALL very 

positive about “complete” DRNG (see Microsoft response below) 
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The Microsoft Letter 
To: Renee James, Justin Rattner, Ernie Brickell, Pat Gelsinger, Rob Crooke, Tom Kilroy 

CC: George Cox, Jim Rottsolk, Dave Aucsmith, Craig Mundie, David Pritchard 

Subject: Intel Random Number Generation Hardware Proposal 

Date: August 4, 2008 

George Cox and a team of Intel engineers have developed requirements and a compliant design for a random 
number generator intended for inclusion in Intel CPUs.  There is no such capability in current mass market CPU’s 
(although a somewhat standard PC component, the TPM, has a low rate entropy source).   

The lack of a high quality entropy source has been a significant contributing factor in the failure of many 
cryptographic systems.  There is ample evidence that this has caused harm to customers of both Intel and 
Microsoft and knowledgeable customers have consistently demanded such a capability.  As a result, Microsoft 
considers the broad availability of hardware providing high quality entropy as a critical need in current PC 
systems.   

A hardware entropy subsystem must: 

 Have an analytically validated entropy quality model including a known “min-entropy” value for each raw sample. 

 Comply with existing standards (e.g., ANSI X9.82 and NIST SP 800-90) and, ideally, be FIPS 140-2/3 certified. 

 Provide entropy at a higher rate than current TPMs without the “part fatigue” associated with some TPM 
implementations. 

 Deliver high quality entropy without significant latency even early in system initialization without complex driver 
support. 

Our initial analysis of the Intel design convinces us that Intel’s proposal will likely fulfill these requirements and 
thus deliver high value to customers as well as significantly improve security in the PC ecosystem. We appreciate 
Intel’s leadership in delivering this critical capability and strongly support its development and the widest possible 
deployment.   

We look forward to working with Intel in providing this vital capability to our customers.  

John L. Manferdelli, Distinguished Engineer, Microsoft Corporation 
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DRNG Reuse Scope & Feasibility 

Si Impact – [Medium] – Mostly in uncore on processors 

– Uncore: Totally self contained uncore DRNG (Entropy Source, Online Health 
Test, Conditioner, DRGB, Output Queue, BIST, and Test Port) plus “wrapper” 

• ~148,035 um2 (1269) 

• ~83,724  um2 (1270) and 

• ~81,251 um2 (1271) 

– Core: ~50 uops to implement RdRand instruction 

Effort – [Low] – Given prior Ivy Bridge and test chip work 

Power impact – [Low] - Expect to be negligible due an clock gating ability 
when entropy computation/post processing is not in-progress 

– ~4.40mw active, ~2.78 mw leakage on Ivy Bridge (1270)  

Technical risks – [Low] – Given prior Ivy Bridge and test chip work 

Process dependency – [None] 

– Planned availability as reusable Intel Reuse Repository (IRR) IP library block 
across processes (e.g., 1269, 1270, 1271, …) 
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DRNG Maturity & Roadmap 

Maturity - High 
– Current tech readiness – passed TRP L2 (10/14/08), SAFE G2/SDL S1/SPARC passed, 

CART closed (9/18/08) 
– Appropriate HAS, DRNG and Wrapper MAS specifications per embedding 
– Product quality, collateral circuit of uncore elements (test chips 1269 (broadly 

functional) and X10B/1270 in mid-summer 2010), detailed element sizings available 
– FIPSing direction approved, designed for FIPSing, and SOW for FIPSing of 1269 test 

chip closed w/Atlan (our FIPSing lab) 
– Totally Intel IP with parent application filed 

• X-generational Roadmap - It is POR for: 
– Large core processors: 

• Starting with Ivy Bridge and Haswell (in 1270) and 
• Associated server processors (Ivy Town) 

– Small core processors: starting with Silvermont/Pondicherry-based SOCs 
• Valley View (in 1271.1) and 
• Tangier (in 1271.4); and 

– Chipsets: starting with Lynxpoint PCH (in 1269.8) 
– Integrated and discrete graphics – starting w/GEN in Haswell and Forest Isle (dLRB3) 
– Eventually as a reusable IP collateral circuit  providing uniform brand promise across 

ALL Intel silicon - platform types (MIDs – Servers) – on processors, chip sets, and 
anywhere else that entropy is required 

• External dependencies 
– Designed to meet/exceed NIST SP 800-90 and be FIPS 140-2/3 Level 2 certified as such 
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DRNG Reuse – Interconnect Mix and Match 

Process Primary Bussing Interface Scan Volume Output 

 

Clock Rate 

1266 1266 800 MHz 

MPS1/1269.0 1269.0 Test wrapper pins 800 MHz 

X10B/1270 1270 TMG scan Special pins 

 

800 MHz 

MPS4/1269.8 1269.8 Slave TAP VISA 207 - 400 MHz 

Ivy Bridge and Ivy Town 1270 Message Channel + TAP to MC - 800 MHz 

Haswell Client and Server 1270 IOSF SB (16 bit) TAP to IOSF VISA 800 MHz 

Lynxpoint and Wellsburg 1269.8 ME AUX TAP to ME AUX VISA 207 - 400 MHz 

Valley View 1271.1 IOSF SB (8 bit) + AC Slave TAP VISA 207 - 400 MHz 

Tangier 1271.4 IOSF SB (8 bit) + AC Slave TAP VISA 207 - 400 MHz 

MoonRun 1272 ? Slave TAP VISA ? MHz 

Canonical Wrapper for IRR IOSF (8 bit + AC and 16 
bit) and ME AUX 

Slave Tap VISA scalable 
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DRNG Reuse Learnings 

Initial processor-based embeddings used a “shared” DRNG module 
located in the processor uncore connected to the processor cores 
through a “shared” interconnect 

The “shared” interconnects employed (i.e., Message Channel and IOSF) 
resulted in huge latency penalties (e.g. 2-400 uncore clocks) per 
reference even on unloaded configurations executing back-to-back 
RdRands 

Ivy Bridge has implemented “a one off alternative” interconnect in order 
to cut this latency down to ~100 uncore clocks 

This points to migrating the DRNG : 

• Closer to the processors on a wider/faster “shared” bus (e.g., for 
Broadwell) or 

• Into the processor as the DRNG becomes ever smaller by: 
– Process related shrinkage and/or 

– A slower (but smaller) DRNG design that would deliver faster overall results 
by avoiding interconnect latency 
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DRNG Enabling 

Initial SW enabling in the Ivy Bridge context (which will be reusable across ALL 
Intel processor implementations) should include having externally 
deliverable/supported: 

• RdRand instruction enabling (e.g., in SW development tools 
– Instruction level simulators 
– SDV and/or SDK enabling 
– Assembler, debugger, and complier intrinsic/instruction inlining support, and 
– An Embeddable RdRand “inner loop” (to be developed by SSG VSL/MKL team?)) and 

• Along with these tools, support working with selected OSVs (e.g., Microsoft, 
Apple, and Linux), Security ISVs (e.g., RSA), and ISVs (e.g., EMC, Oracle, 
Google) for RdRand-enabling their SW PRNGs by: 
– Embedding the RdRand “inner loop” in their SW PRNGs (e.g., for seeding/reseeding) 

and 
– Direct use of RdRand (really more likely direct use of the RdRand “inner loop” via a 

complier intrinsic). 

• Intel library enabling – for RdRand-enabling SW PRNGs in: 
– Intel’s Vector Statistical Library (VSL) sub-component of Math Kernel Library (MKL) and 
– Intel’s IPP libraries 

• Inner loop (direct instruction use) enabling for other interested ISVs (e.g., 
nondeterministic simulation and gaming) 

Intel internal documentation (e.g., FAQ – see attached draft); and 

Intel external/product documentation (e.g., FAQ, instruction interface)  
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DRNG Usages 

RNGs are foundational enablers (e.g., for making keys) of all cryptographic 
usages in 

• Communications- ALL levels of ALL stacks (XML, TLS, VPN, IP, WiFi, …) 

• Signing – digital certificates, integrity manifests, attestation, transactions 

• Storage – file and volume 

• DRM 

In the crypto arena,  

• Security ISVs and OSVs 

will embed DRNG support into their cryptographic “libraries”  

• VPN vendors 

• SSL/TLS: 

• Browser vendors 

• SSL VPN vendors 

• Authentication Services vendors 

• Data base and storage ISVs 

will use DRNG for making better keys, IVs, nonces 

In the non-crypto arena, 

• Non-deterministic simulation ISVs (Monte Carlo and weather) and simulation vendors 

• Non-deterministic gaming ISVs (interactive and gambling) 

will use DRNG for better simulation and gaming 
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FIPS Certification 

Initial certification - significant work/cost ($35-50K)  

• Approved by Security Initiative/BCG management 

• In process of FIPS 140-2/3 Level 2 certification to NIST SP 800-90 compliance 
by an external lab (Atlan) 

• On 1269/MPS1 test chip 

• Accumulation and review of initial documentation 

• Capture and analysis of “raw” entropy 

• Running Known Answer Tests (KATS) and review of test results 

Incremental recertification for reuse – much less work/cost ($5-15K) – drive to a 
simple repeatable process 

• Once per process – on 1270/X10B test chip  

• Once per product (family – Ivy Bridge, Haswell, Silvermont, LynxPoint) 

• Update and review of documentation 

• Capture and analysis of “raw” entropy 

• Rerunning Known Answer Tests (KATS) and review of test results 

• Not to be redone per stepping 
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FIPS Certification (2) 

Once initial DRNG module FIPS certification is achieved 

• Our plans are to incrementally recertify on a per product basis 

• As an expected checklist item by OSVs and security, database, and storage 
ISVs 

If certification is delayed, there will be no holdup of product shipment  

• Until certified, we can say: 
– Product xyz provides a DRNG module designed to meet the NIST SP 800-90 standard. 

• Once certified, we can say: 
– Product xyz provides a DRNG module certified to meet the NIST SP 800-90 standard 

to FIPS 140-2/3 Level 2. 

If errata interfere with or preclude the certification process? 

• We can still say: 
– Product xyz provides a DRNG module designed to meet the NIST SP 800-90 standard.  

Some higher security customers/vendors may require an S-spec part that has 
gone through certification 

As part of explaining RdRand and our DRNG, we will deliver white papers on: 

• The RdRand instruction, its usages, and available SW tools/libraries; 

• The DRNG module architecture; and 

• How FIPS certification was achieved 
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RdRand/DRNG – To SKU Or Not To SKU 
Since its inception, our RdRand instruction and its underlying DRNG enabling 
functionality have been: 

• Intended for solving a fundamental platform security problem uniformly and 

• Committed as a “common brand promise” of high quality entropy across ALL Intel 
silicon. 

In all our negotiations with OSVs (e.g., Microsoft and Apple), security ISVs (e.g., 
RSA/EMC), and ISVs (e.g., Oracle and Google), their commitment to enabling/use 
has been predicated on their insistence of ubiquitous presence across the spectrum of 
Intel-based platforms. 

Thus, our DRNG is a cross Intel security enabling element and is POR for large core 
processors (client and server), small core processors (all SOCs), chipsets, and 
integrated graphics 

Beyond being used by processor ucode in the implementation of the RdRand 
instruction, on large core processors, starting with Haswell, our DRNG is also used 
by: 

• PCU 

• GEN and  

• PAVP elements to provide entropy  

Comparably, on small core processors, starting with Silvermont-based SOCs, our 
DRNG is also used by: 

• The SEC (in Valley View)  

• The Chaabi (in Tangier) elements to provide entropy 
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RdRand/DRNG – To SKU Or Not To SKU 

On both large and small core processors, our DRNG will be used by ucode for 
making keys for memory encryption for PPPE and SE and by ucode in 
implementation of SE 

On chipsets, starting with Lynxpoint and Wellsburg, our DRNG is used to replace 
their old analog TRNG. 

Our DRNG is NOT a “performance” feature (e.g., like AES NI) that can be 
implemented more slowly in SW on lower end processors and much faster (e.g., 
using DRNG HW) on higher end processors – it is a fundamental platform enabling 
feature – there is no way to generate entropy in SW 

Not all of our new security technologies have a direct monetization strategy 

Intel is building a “Protection” value vector into our brand… at a level with power 
and performance   

As described above, our RdRand/DRNG implementation is POR for delivery across 
all Intel silicon, from top to bottom 

RdRand/DRNG is not a technology that Intel plans to SKU and target for sell-up, or 
consider for revenue-share or licensing models 

As such, it is not a focus of the Security Monetization task force (an effort which is 
currently underway)  
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Haswell DRNG Embedding 
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Previous Ivy Bridge configuration similar but for: 

• Using older Message Channel (instead of newer IOSF SB) and 

• IVB GEN not using DRNG 
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Lynxpoint PCH DRNG Embedding 
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Valley View DRNG Embedding 
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Valley View SOC not currently intending to have SEC use DRNG 
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Tangier DRNG Embedding 
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Temporal Asynchrony Between Subunits 
 

Our DRNG is logically a three stage/subunit asynchronous production pipeline 
(composed of the Entropy Source, Online Health Test, and Conditioner and DRBG) 

For “flow control” purposes, these subunits each have what amounts to an “output 
queue” between them and their nearest neighbor in the DRNG production sequence 

Depending on the subunit production rate and the next subunit consumption rate, 
unpredictable dynamic synchronization behaviors ensue 
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data 

data_valid/clock_out 
DELAY 

1-SHOT 1-SHOT 

Stop   

high 

skew 

large 

cap 

large 

cap 

heart_clock 

node A node B 

A cap B cap 

Differential latch 

Push into metastable state with resolution driven by thermal noise 

Dynamic, bilateral, step-based feedback loop to deal with any circuit bias 

Designed to be stable across process, temperature, and voltage/power variations 

Entropy Source For 1269 Process (MPS1) 
 


